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Y Background

® Point Cloud Registration for Connected Vehicles B Registration Challenges

¢ Extend the connected vehicles’ views ¢ Small overlapping regions

¢ Circumvent the resource-intensive procedures ¢ Computationally intensive task

¢ Exhibit adaptability to planning without HD % Significant transmission latency due to large
maps data volumes

—

Registration

Overlapping
Regions



Y Background

» Formulation of the Point Cloud Registration Problem:

I ~ ~

FPm— g m—————— — | P & (Q are matrices consisting of corresponding points

. ~ 1
Resg(lgtem I P — (fI?Q + f) I ' P € RM*3 and Q € RM*3 represent the source and
I I | target point clouds.

|
1
|
I
' selected from the point clouds P & Q . !
|
|
1
| | T T T TRy,

\/ \
____________________________________ I |
' R &t : R € SO(3) denotes the rotation matrix ~ |_ _ _ _ | Transformation Matrix R tT] |
|
: and t € R3 denotes translation vector. i !_ ___________________ 0_1_><§_ _ }_ !
» Correspondence Search: : F denotes the features extracted from points.

|

I

|

. p; and g; are a pair of corresponding points. :

I Fo) —F@) U< fenr  ===» 05U :
1

! ftnr is @ threshold for feature distances.

» Transformation Estimation:

ﬁ The transformation estimation can be solved using particular algorithms, with the Random
Sample Consensus (RANSAC) algorithm being most commonly used. 4



)) Motivation

Impact of different types of point clouds

» Counterpart point cloud = can not find » Ground points = majority of the points &
correspondence concentric circles = behave similarly
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» Non-ground points - different densities = different extracted features
—> negative influence on point cloud registration
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Y System Architecture

- Workflow \

Point Cloud | Initial EDensity-Consistenti Inference . Initial itionina based int cloud
Collection E Positioning ! Partition ! Pipeline I’_ll I&_’l pO_SI l0ning base _On poIn (?OU
= | (o) | - distributions: convert point clouds into
= i lQ) | | < | - distribution matrices, and perform
— ! E | template matching to determine the initial
Y e —— R T [“‘F‘t"“? transformation.
b Ground ! ) : eature | ] . e
| 1| Scgmentation | | I‘ Density “ ; :‘ pecion | ||+ Density- consistent partition strategy:
Souree ||| ¥ B i L 1 | identify correspondences between regions
Point Cloud : G t I I - - . .
intCloa | | (Eei i | i | | | in source and target point cloud, simplify
ey [ Groa ] I | e the ground point cloud while preserving
[ Gemente ¢y AR S | | Feature Fusion | | observations about the counterpart vehicle.
I Possibl 1 P . - . .
Target | | | | Locatins | | | ! 0 1 |+ Inference Pipeline: integrate virtual
PolntCloud | 1 | v B ol | eometric features with those features
| I I
b Template | ! I| Counterpart | i | | Transformation | . .
\ || Matching || i || PointCloud || ! || Estimation | extracted from the partitioned point cloud.
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Y Initial Positioning

» Four Main Steps

Execute Ground Segmentation to obtain : Divide these point clouds to Generate Distribution
: ground point cloud G, non-ground low point Matrices, and denote matrices as M, M! and M"
: cloud G!, and non-ground high point cloud G *. : : from point clouds G,Gl and G, respectively.

u
----------------------------------------------------------------------------------

-----------------------------------------------------------------------------------------

Generate Possible Locations by identifying : i Seek pairs of points in two possible locations’ sets,
: gaps in the ground distribution matrix, and : ¢ and implement Template Matching to obtain initial :
: further filter possible locations. : ¢ transformation matrix.

u
----------------------------------------------------------------------------------------

» Ground Segmentation

Employ Patchworkpp to obtain ground point cloud G and non-ground point cloud G
Partition G into non-ground low point cloud G! and non-ground high point cloud G"

6! = {pk € P lz(py) < zipir + 2 ' z() returns the z value of a point |
ch = {pk €P Z(pk) - Zl,m,t + Zthr}} - = = = = z;n; denotes the height of the LIDAR | 9
f fed = it thr ' Z¢eny denotes a defined threshold :



)) Initial Positioning

> Generate Distribution Matrices

Z@; Core: Divide the point cloud into meshes based on the (x, y) values of the points.
Denote three Matrices as as M, M! and M".
Employ larger area for long-distance meshes.
» Generate Possible Locations
‘;@; Core: vehicles in the perceptual range create gaps in the ground - ldentify gaps in ground distribution matrix M
Devise a center-oriented Gaussian blur to fill in ground gaps at long distances
Find obscured objects in front of gaps > Filter possible locations > ¢ = {(x1,¥1),..., (x}, yY), ..., ™, y™)}

Tl = F Er
» 1B . = -

= ) ¥
e Certer orlented._ j’\?’:"“h?
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( )
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______________________ F Locations
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) Initial Positioning

» Template Matching R

I |
. |
| 1 |Cs|, |C¢| denote the possible locations’ sets from two vehicles !
e Tttt
D, = {d}, ..., d., ...,dLCSl} If |dL — di| < d¢py, calculate the rotation angle and translation vector:
|- _———— 0;j = arctan(—yt, —xt) — arctan(yt],xg)
2 D, = {d}, ., d}, ..., d;""!} o, P
Lrmr gy 2t tij:((xs_xt)/zx(YS_yt)/z)

. @
((t@))) Rotation angle enables the pair of possible locations to be approximately symmetric about the center

o o Translation vector makes the possible locations are close to the center in corresponding matrices

Execute transformation and two-dimensional Gaussian Blur:
Mt it > ut, v

&5 Core: Execute Binarization and calculate the Normalized

¢ Cross Correlation (NCC) for Template Matching: 1 Transformation and 1

Two-dimensional Gaussian Blur

—~ 1] PN - v ! : |
\/Zx,yM.gl (x;y)z'Zx,yM[L (X;:V)Z ' =/ Compute NCC | | 1

NcCc(Ml, My =




» |

nitial Positioning

Algorithm 1: Template Matching.

Input: Distribution matrices: ﬂ%’i", ﬂ’f ﬂﬂﬂ 'l:fi

Possible locations sets: C,, C;; Distance sets:

DF;: Dr,
Output: Initial rotation angle, d; Initial
translation, t;

STEP-1: Find Possible Locations Correspondences;

Initialize Cy:

for e =1 to [Dg| do
for j =1 to |D¢| do
if |[d! — d}| < dip, then
Insert (C,[i],C¢[j]) into Cy;

STEP-2: First Layer Template Matching;
Initialize NCC set N'1 and N2;
Perform Gaussian blur on M and M

for k=1 to |Cs| do
Compute §;, and t; by Cqlk]:
Transform and perform Gaussian blur to take
MP, M} to MY AP
Insert NCC(M!” ,J,fh ) into N1;

Select NCC from N1 as N 1 and corresponding
{‘oordmaw& from C,,; as_ C’ .; via top-k selection;

STEP-3: Second Layer Template Matching:

20

21

; for k=1 to |C.,| do

Compute 67 and t; by C.,[k];

Extend &Y to [67, 04,02, ... '];

for &), in [09, 01, 02,...,6° '] do
Transform and perform Gaussian blur to
take M!, M to MY, MY -
Insert N'1'[k] 4+ NCC(MY ML) into N'2; |

22

23

oelect the highest VGO Irom V2 and
corresponding ¢ and t;
Return: &, t:

e A

;@; Core: Find possible locations and execute two-layer
template matching = initial transformation

: Find the corresponding pairs of points based on the
]  distance to the center.

| Execute the first layer template matching on non-ground
| hlgh point cloud.

Extend the values of §, and t; and execute the second
layer template matching on non-ground low point cloud.

12



Y)) Density-consistent Partition

> Three factors
for partition :

---------------------------------------------------------------------------------------------------------

» Density

v' Merge the matrices M! and M" into a non-ground distributed matrix denoted as M.
v Adopt a larger mesh length to reduce the effect of initial transformation error.
v" Select corresponding meshes with close density ratios :

» Counterpart point cloud
v" Be filter out due to the mismatch in density = Keep this part and utilize it

» Ground point cloud

v Exhibit similar features = calculate and retain the normal and height
v Normal vector could initiate the rotation in x-axis and y-axis = pitch and roll angles of the vehicle
v" Height could be embedded as features

13



Y Inference Pipeline

Feature Virtual Geometric ' Transformation
Extraction - Feature Fusion - Estimation

o
@;@’?) Feature Extraction & Transformation Estimation are consistent with previous work.
(o]

> Virtual Geometric Feature Fusion

v Geometric Feature Construction:
« Gather point clouds using reference LIDARs from various positions surrounding a vehicle.
» Record transformation matrices between these reference LIDARs and the LIDAR installed on the vehicle.
« Transform these collected point clouds into a coordinate system.

Coordinate system of the LIDAR V= T(V)
I installed on the Vehicle

SaPme -V virtal ééar'ngiﬁé point cloud

| |

&5 =7 > :%S- - — — V7 : virtual geometric feature !
W ' | Feature @ 258800 © © © = =---------s----o---------------

Extraction 14



Y Inference Pipeline

» Virtual Geometric Feature Extraction
v’ Take the partitioned point cloud 2 to generate integrated point cloud P’

Source Point Cloud Target Point Cloud
P" = Concat(P,Vy) . L ¥ 3
d o X 0 "z ", =z -
F(P") = Concat(F(P), V). (@ =0 b

. ‘@ Concatenate Virtual Geometric  Concatenate
))) ] ] ] Features
. Instead of integrating the entire

(

O%F.°  virtal point cloud, we trim it based . ke - = 1
on the initial transformation to avoid aq »°» N /E‘;]
mismatched of correspondence. » 3\

A Registration A

v" Assign fixed values into the features of counterpart point cloud and the virtual geometric point

cloud.
v" Assign values about ground height into the features of partitioned point cloud.

15
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Dataset Platform

€ CARLA Simulator = gather @ Employ ERS on laptops as
LiDAR point clouds & collect resource-limited vehicles
virtual geometry point clouds € measured data rate around 7.0
of different vehicles. Mbps
Feature Extraction + Transformation € Accuracy: Relative Rotation Error
Estimation: (RTE), Relative Translation Error
€ FPFH + RANSAC (REE), Feature Matching Recall
€ FCGF + RANSAC (FMR), Registration Recall (RR)
@ Predator + RANSAC € Running Time: Execution time &

€ GeoTransformer (End-to-end method) Transmission latency

Compared Algorithms Evaluation Metrics



Evaluation

O Impact of different density thresholds on execution time and accuracy

- FPFH &) |
B FCGF ‘ & @ - ®
5007 @ Predator & — 0.951 % . _F. .
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The execution time for each method increases as Registration Recall reach their highest values at
the density threshold increases. lower density thresholds and then gradually decrease.

L7 4

ogo Taking into account the execution time and RR, select appropriate density thresholds for these
% . : 18
registration methods.



)} Evaluation

O FMR with respect to inlier distance (left) and inlier ratio (right)

1.0 1 d==k=% 1.0- % s i
O @ ® _*_.*";.—g._g—ﬂ)
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() [} o /
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o o e .Q/ @
c i - 4 ./
G 06 G 08 . —+«~ FPFH w/ ERS
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5 0.41 041 tE s~ FCGF w/ ERS
2 = 4 =— FCGF w/o ERS
] D J'e
© © / o— Predator w/ ERS
o Oo2l i £
w 0.2 L ¢ /MM o— Predator w/o ERS
;?// GeoTrans w/ ERS
[ |
0.0 0.0 - GeoTrans w/o ERS
0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.050 0.075 0.100 0.125 0.150 0.175 0.200
Inlier Ratio Threshold Inlier Distance Threshold

v ERS effectively enhances the quality of corresponding point pairs.

v With the inlier ratio and inlier distance fixed at 0.1 and 0.1 m, three methods see significant
Improvement after deploying ERS.

v GeoTransformer shows a slight increase at this point but a clear improvement in the overall quality.

19



)} Evaluation

O Accuracy under three cases:
without ERS employment,
with ERS deployment but no virtual geometric features (VGF),
with full ERS deployment

- So the RTE and RRE of GeoTransformer

 becomeshigher. 20

Method RTE(m) STD(m) REE(°) STD(°) RR(%) | . All methods achieve higher RR after !
FPFH w/o ERS 0.360 0.267 1.460 1.010 19.5 . deploylng ERS. -
FPFH w/o VGF 0.335 0.297 1.325 0.950 86.5 b mmmmmm e mmmm e m oo '
FPFH w/ ERS 0.212 0.167 1.091 0.826 94.0
_________________________________ |
FCGF w/o ERS 0.327 0.408 0812 om7 582 | . Three methods achieve higher accuracy in !
FCGF w/o VGF 0.347 0.322 1.302 1.011 92.7 I
FCGF w/ ERS [0.213 0227 0615 0602 O70] - termsof RTEandRRE. -
Predator w/o ERS 0.198 0.166 0.779 0.640 63.2
Predator w/o VGF 0.350 0.279 1.567 1.102 77.5 ottty I
Predator w/ ERS [0.141 0.146 0.581 0.471 97.8] i RRE and RTE are the average values when !
|
GeoTrans w/o ERS  [0.194 0.246 0.537 0.829 |  64.6 i registration is successful, deploying ERS !
GeoTrans w/o VGF 0.292 0.312 1.242 1.112 85.9 f complex nari |
GeoTrans w/ ERS 0.248 0.301 1.005 0.991 89.6 ' solves a large number of complex scenarios. !
:
1



)} Evaluation

O Average execution time for each step of ERS

Steps Times(ms) ERS operates independently
Ground Segmentation 12.33 of the specific registration
methods.
Generate Possible Locations 4.20
Template Matching 12.99 The average overall
Densitv-Consistent Partit L 63 execution time of ERS is
ensity-Consistent Partition . 31.15ms.

O Average transmission latency

' Raw LIiDAR point cloud (2.0 MB) \ point cloud after voxelization(1.2 MB) - !
| ! Sparse distribution matrices (16.23 KB) + !
: Selected point clouds (29.68 KB or 49.65 KB with density threshold as 1.5/2.0) |

;@; ERS delivers a more than 18.5X data transmission saving.

21



Y)) Evaluation

0 Execution times of the four registration methods

Method Down- Extract Transformation  Total Execution
o Sampling(ms)  Features(ms) Estimation(ms) Time(ms)
FPFH w/o ERS - 168.70 436.37 605.07
FPFH w/o VGF - [ 23.38 55.30 77.68 |
FPFH w/ ERS - 31.89 62.52 94.41
FCGF w/o ERS - 64.51 669.68 734.19
FCGF w/o VGF - 31.13 129.18 160.31
FCGF w/ ERS - 31.33 [74.20 105.53]
Predator w/o ERS 329.47 298.08 740.91 1368.46
Predator w/o VGF 40.16 36.43 112.91 189.50
Predator w/ ERS 46.22 39.88 166.23 152.33 |
GeoTrans w/o ERS 354.23 221.12 143.81 719.16
GeoTrans w/o VGF 72.73 [ 45.04 142.83 260.60 |
GeoTrans w/ ERS 74.69 47.13 143.67 265.49

' FGCF & Predator: VGF effectively increases the correspondences so that RANSAC reaches the !
 termination condition earlier. :
, FPFH & GeoTransformer: VGF results in a slight time increase. !

¢g¢ ERS speeds up the overall running time by 5.7X on average, up to 8.0X. All methods achieve
%% real-time or near real-time performance.

22



Y Conclusion

speed and accuracy of LIDAR

point cloud registration o _
between CVs. v" To facilitate computing and
transmission, we propose three key

components to find overlapping
> regions: initial positioning, density-
consistent partition strategy, and
great performance. Results

‘ virtual geometric feature fusion.
demonstrate that ERS improves

the overall running time of o a

v We present ERS, a plug-and-
play system to enhance the o m

v" Extensive simulations validate its

current state-of-art baselines by
5.7X with 42.1% registration
recalls gains. 23
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