
Yu Zhao1, Jinrui Zhou1 , Mingjun Xiao1,

Jie Wu2, and He Sun1

1University of Science and Technology of China
2Temple University

ERS: Faster LiDAR Point Cloud Registration
for Connected Vehicles

44th IEEE International Conference on

Distributed Computing Systems

➢Background & Motivation

➢System Architecture

➢Methodology

➢Evaluation & Conclusion

Outline

3

Background

◼ Point Cloud Registration for Connected Vehicles

◆ Extend the connected vehicles’ views

◆ Circumvent the resource-intensive procedures

◆ Exhibit adaptability to planning without HD

maps

◼ Registration Challenges

◆ Small overlapping regions

◆ Computationally intensive task

◆ Significant transmission latency due to large

data volumes

Registration

Overlapping

Regions

4

Background

➢ Correspondence Search：

➢ Formulation of the Point Cloud Registration Problem:

𝒫
~

& 𝑄
~

 are matrices consisting of corresponding points

selected from the point clouds 𝒫 & 𝑄 .

𝒫 ∈ ℝ𝑀×3 and 𝑄 ∈ ℝ𝑀×3 represent the source and

target point clouds.

𝑅 & 𝑡 : ሻ𝑅 ∈ 𝑆𝑂(3 denotes the rotation matrix

and 𝑡 ∈ 𝑅3 denotes translation vector.

➢ Transformation Estimation：

𝑚𝑖𝑛
 𝑅∈𝑆𝑂(3ሻ,𝑡∈𝑅3

∥ 𝑃
~

− (𝑅𝑄
~

+ 𝑡ሻ ∥2

Transformation Matrix: 𝑅 𝑡𝑇

01×3 1

∥ ℱ(𝑝𝑖ሻ − ℱ(𝑞𝑗ሻ ∥< 𝑓𝑡ℎ𝑟

ℱ denotes the features extracted from points.

𝑝𝑖 and 𝑞𝑗 are a pair of corresponding points.

𝑓𝑡ℎ𝑟 is a threshold for feature distances.

The transformation estimation can be solved using particular algorithms, with the Random

Sample Consensus (RANSAC) algorithm being most commonly used.

5

Motivation

Impact of different types of point clouds

➢ Ground points → majority of the points ＆

concentric circles → behave similarly

➢ Non-ground points → different densities → different extracted features

→ negative influence on point cloud registration

➢ Counterpart point cloud → can not find

correspondence

➢Background & Motivation

➢System Architecture

➢Methodology

➢Evaluation & Conclusion

Outline

7

System Architecture

Workflow

• Initial positioning based on point cloud

distributions: convert point clouds into

distribution matrices, and perform

template matching to determine the initial

transformation.

• Density- consistent partition strategy:

identify correspondences between regions

in source and target point cloud, simplify

the ground point cloud while preserving

observations about the counterpart vehicle.

• Inference Pipeline: integrate virtual

geometric features with those features

extracted from the partitioned point cloud.

➢Background & Motivation

➢Related Work & Problem Formulation

➢Methodology

➢Evaluation & Conclusion

Outline

9

Initial Positioning

➢ Four Main Steps

Step 1

Execute Ground Segmentation to obtain
ground point cloud 𝒢, non-ground low point

cloud ෡𝒢 𝑙, and non-ground high point cloud ෡𝒢 ℎ.

Divide these point clouds to Generate Distribution

Matrices, and denote matrices as 𝑀, ෡𝑀𝑙 and ෡𝑀ℎ

from point clouds ෡𝒢 , ෡𝒢 𝑙, and ෡𝒢 ℎ, respectively.

Generate Possible Locations by identifying
gaps in the ground distribution matrix, and
further filter possible locations.

Seek pairs of points in two possible locations’ sets,
and implement Template Matching to obtain initial
transformation matrix.

Step 3

Step 2

Step 4

➢ Ground Segmentation

Employ Patchworkpp to obtain ground point cloud 𝒢 and non-ground point cloud መ𝒢

Partition መ𝒢 into non-ground low point cloud መ𝒢𝑙 and non-ground high point cloud መ𝒢ℎ

𝑧(∙ሻ returns the 𝑧 value of a point
𝑧𝑖𝑛𝑖𝑡 denotes the height of the LiDAR
𝑧𝑡ℎ𝑟 denotes a defined threshold

መ𝒢𝑙 = 𝑝𝑘 ∈ 𝒫 𝑧 𝑝𝑘 ≤ 𝑧𝑖𝑛𝑖𝑡 + 𝑧𝑡ℎ𝑟}
መ𝒢ℎ = 𝑝𝑘 ∈ 𝒫 𝑧 𝑝𝑘 ≥ 𝑧𝑖𝑛𝑖𝑡 + 𝑧𝑡ℎ𝑟}

10

Initial Positioning

➢ Generate Distribution Matrices

Core: Divide the point cloud into meshes based on the 𝑥, 𝑦 values of the points.

Denote three Matrices as as 𝑀, ෡𝑀𝑙 and ෡𝑀ℎ.

Employ larger area for long-distance meshes.

➢ Generate Possible Locations

Core: vehicles in the perceptual range create gaps in the ground → Identify gaps in ground distribution matrix 𝑀

Devise a center-oriented Gaussian blur to fill in ground gaps at long distances

Find obscured objects in front of gaps → Filter possible locations → ൟ𝒞 = {(𝑥1, 𝑦1ሻ, . . . , (𝑥𝑖, 𝑦𝑖ሻ, … , (𝑥𝑛, 𝑦𝑛ሻ

11

Initial Positioning

➢ Template Matching

Rotation angle enables the pair of possible locations to be approximately symmetric about the center

Translation vector makes the possible locations are close to the center in corresponding matrices

ቅ𝒟𝑠 = {𝑑𝑠
1, … , 𝑑𝑠

𝑖 , … , 𝑑𝑠
|𝒞𝑠|

ቅ𝒟𝑡 = {𝑑𝑡
1, … , 𝑑𝑡

𝑗
, … , 𝑑𝑡

|𝒞𝑡|

𝑑𝑠
𝑖 = ∥ (𝑥𝑠

𝑖 , 𝑦𝑠
𝑖ሻ ∥2, the distance between possible location and center

|𝒞𝑠|, |𝒞𝑡| denote the possible locations’ sets from two vehicles

If |𝑑𝑠
𝑖 − 𝑑𝑡

𝑗
| < 𝑑𝑡ℎ𝑟, calculate the rotation angle and translation vector:

𝛿𝑖𝑗 = 𝑎𝑟𝑐𝑡𝑎𝑛(−𝑦𝑠
𝑖, −𝑥𝑠

𝑖ሻ − 𝑎𝑟𝑐𝑡𝑎𝑛(𝑦𝑡
𝑗
, 𝑥𝑡

𝑗
ሻ

𝑡𝑖𝑗 = ((𝑥𝑠
𝑖 − 𝑥𝑡

𝑗 Τሻ 2 , (𝑦𝑠
𝑖 − 𝑦𝑡

𝑗 Τሻ 2ሻ

Execute transformation and two-dimensional Gaussian Blur:

෡𝑀ℎ, ෡𝑀𝑙
→ ෡𝑀ℎ′

, ෡𝑀𝑙′

Core: Execute Binarization and calculate the Normalized

Cross Correlation (NCC) for Template Matching:

𝑁𝐶𝐶(෡𝑀𝑠
ℎ′

, ෡𝑀𝑡
ℎ′

ሻ =
σ𝑥,𝑦(෡𝑀𝑠

ℎ′
(𝑥, 𝑦ሻ ⋅ ෡𝑀𝑡

ℎ′
(𝑥, 𝑦ሻሻ

σ𝑥,𝑦
෡𝑀𝑠

ℎ′
(𝑥, 𝑦ሻ2∙ σ𝑥,𝑦

෡𝑀𝑡
ℎ′

(𝑥, 𝑦ሻ2

12

Initial Positioning

Find the corresponding pairs of points based on the

distance to the center.

Execute the first layer template matching on non-ground

high point cloud.

Extend the values of 𝛿𝑘 and 𝑡𝑘 and execute the second

layer template matching on non-ground low point cloud.

Core: Find possible locations and execute two-layer

template matching → initial transformation

Return the 𝛿 and 𝑡 with highest NCC

Select corresponding pairs of points via top-k selection.

13

Density-consistent Partition

✓ Merge the matrices ෡𝑀𝑙 and ෡𝑀ℎ into a non-ground distributed matrix denoted as ෡𝑀.

✓ Adopt a larger mesh length to reduce the effect of initial transformation error.

✓ Select corresponding meshes with close density ratios :

➢ Three factors

for partition

Factor 1 Factor 2 Factor 3

Density Counterpart point cloud Ground point cloud

➢ Density

1/𝑑𝑡 ≤ ෡𝑀𝑡(𝑖, 𝑗 Τሻ ෡𝑀𝑠 (𝑖, 𝑗ሻ ≤ 𝑑𝑡 𝑑𝑡 denotes the density threshold

➢ Counterpart point cloud

✓ Be filter out due to the mismatch in density → Keep this part and utilize it

➢ Ground point cloud

✓ Exhibit similar features → calculate and retain the normal and height

✓ Normal vector could initiate the rotation in 𝑥-axis and 𝑦-axis → pitch and roll angles of the vehicle

✓ Height could be embedded as features

14

Inference Pipeline

Feature

Extraction
Transformation

Estimation

Virtual Geometric

Feature Fusion

Feature Extraction ＆ Transformation Estimation are consistent with previous work.

➢ Virtual Geometric Feature Fusion

✓ Geometric Feature Construction:

• Gather point clouds using reference LiDARs from various positions surrounding a vehicle.

• Record transformation matrices between these reference LiDARs and the LiDAR installed on the vehicle.

• Transform these collected point clouds into a coordinate system.

𝒱 : virtual geometric point cloud
𝒱𝑓 : virtual geometric feature

൯𝒱𝑓 = ℱ(𝒱

15

Inference Pipeline

➢ Virtual Geometric Feature Extraction

✓ Take the partitioned point cloud ሶ𝒫 to generate integrated point cloud ሶ𝒫′:

ሶ𝒫′ = 𝐶𝑜𝑛𝑐𝑎𝑡(ሶ𝒫, 𝒱𝑠ሻ

ℱ(ሶ𝒫′ሻ = 𝐶𝑜𝑛𝑐𝑎𝑡(ℱ(ሶ𝒫ሻ, 𝒱𝑠
𝑓

ሻ.

Instead of integrating the entire

virtual point cloud, we trim it based

on the initial transformation to avoid

mismatched of correspondence.

✓ Assign fixed values into the features of counterpart point cloud and the virtual geometric point

cloud.

✓ Assign values about ground height into the features of partitioned point cloud.

➢Background & Motivation

➢Related Work & Problem Formulation

➢Basic Idea & Solution

➢Evaluation & Conclusion

Outline

17

Evaluation

Experimental Settings

PlatformDataset

Compared Algorithms Evaluation Metrics

◆ CARLA Simulator → gather
LiDAR point clouds ＆ collect
virtual geometry point clouds
of different vehicles.

◆ Employ ERS on laptops as
resource-limited vehicles

◆ measured data rate around 7.0
Mbps

Feature Extraction + Transformation
Estimation:
◆ FPFH + RANSAC
◆ FCGF + RANSAC
◆ Predator + RANSAC
◆ GeoTransformer (End-to-end method)

◆ Accuracy: Relative Rotation Error
(RTE), Relative Translation Error
(REE), Feature Matching Recall
(FMR), Registration Recall (RR)

◆ Running Time: Execution time ＆
Transmission latency

18

Evaluation

 Impact of different density thresholds on execution time and accuracy

The execution time for each method increases as

the density threshold increases.

Registration Recall reach their highest values at

lower density thresholds and then gradually decrease.

Taking into account the execution time and RR, select appropriate density thresholds for these

registration methods.

19

Evaluation

 FMR with respect to inlier distance (left) and inlier ratio (right)

✓ ERS effectively enhances the quality of corresponding point pairs.

✓ With the inlier ratio and inlier distance fixed at 0.1 and 0.1 m, three methods see significant

improvement after deploying ERS.

✓ GeoTransformer shows a slight increase at this point but a clear improvement in the overall quality.

20

Evaluation

 Accuracy under three cases:

without ERS employment,

with ERS deployment but no virtual geometric features (VGF),

with full ERS deployment

All methods achieve higher RR after

deploying ERS.

Three methods achieve higher accuracy in

terms of RTE and RRE.

RRE and RTE are the average values when

registration is successful, deploying ERS

solves a large number of complex scenarios.

So the RTE and RRE of GeoTransformer

becomes higher.

21

Evaluation

 Average execution time for each step of ERS

ERS operates independently

of the specific registration

methods.

The average overall

execution time of ERS is

31.15ms.

 Average transmission latency

Raw LiDAR point cloud (2.0 MB) \ point cloud after voxelization(1.2 MB) →

Sparse distribution matrices (16.23 KB) +

Selected point clouds (29.68 KB or 49.65 KB with density threshold as 1.5/2.0)

ERS delivers a more than 18.5X data transmission saving.

22

Evaluation

 Execution times of the four registration methods

FGCF & Predator: VGF effectively increases the correspondences so that RANSAC reaches the

termination condition earlier.

FPFH & GeoTransformer: VGF results in a slight time increase.

ERS speeds up the overall running time by 5.7X on average, up to 8.0X. All methods achieve

real-time or near real-time performance.

23

Conclusion

01

02

3

✓We present ERS, a plug-and-

play system to enhance the

speed and accuracy of LiDAR

point cloud registration

between CVs. ✓ To facilitate computing and

transmission, we propose three key

components to find overlapping

regions: initial positioning, density-

consistent partition strategy, and

virtual geometric feature fusion.
✓ Extensive simulations validate its

great performance. Results

demonstrate that ERS improves

the overall running time of

current state-of-art baselines by

5.7X with 42.1% registration

recalls gains.

Thank you for your attention!

Question?

Yu Zhao zhaoyu0624@mail.ustc.edu.cn

44th IEEE International Conference on

Distributed Computing Systems

mailto:zhaoyu0624@mail.ustc.edu.cn

	Slide 1: ERS: Faster LiDAR Point Cloud Registration for Connected Vehicles
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

