44th IEEE International Conference on

ERS: Faster LiDAR Point Cloud Registration

for Connected Vehicles

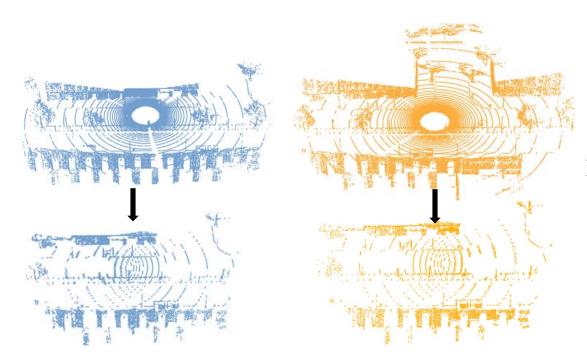
¹University of Science and Technology of China ²Temple University

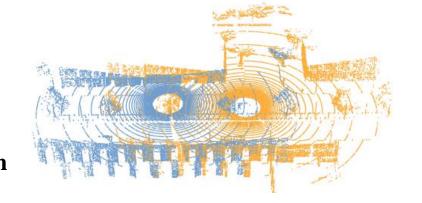
- ➤ Background & Motivation
- >System Architecture
- > Methodology
- **Evaluation & Conclusion**

Background

- Point Cloud Registration for Connected Vehicles
 - Extend the connected vehicles' views
 - Circumvent the resource-intensive procedures
 - Exhibit adaptability to planning without HD maps

- Registration Challenges
 - Small overlapping regions
 - Computationally intensive task
 - Significant transmission latency due to large data volumes

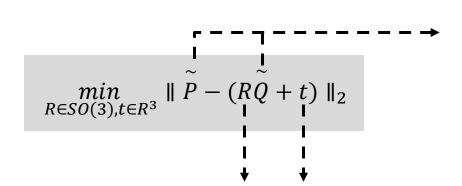




Overlapping Regions

Background

> Formulation of the Point Cloud Registration Problem:



 $\overset{\sim}{\mathcal{P}} \& \tilde{Q}$ are matrices consisting of corresponding points selected from the point clouds $\mathcal{P} \& Q$.

 $\mathcal{P} \in \mathbb{R}^{M \times 3}$ and $Q \in \mathbb{R}^{M \times 3}$ represent the source and target point clouds.

 $R \& t : R \in SO(3)$ denotes the rotation matrix and $t \in R^3$ denotes translation vector.

! !- - - - →

Transformation Matrix:

$$\begin{bmatrix} R & t^T \\ 0_{1\times 3} & 1 \end{bmatrix}$$

Correspondence Search:

$$\parallel \mathcal{F}(p_i) - \mathcal{F}(q_j) \parallel < f_{thr}$$

 ${\mathcal F}$ denotes the features extracted from points.

 p_i and q_i are a pair of corresponding points.

 f_{thr} is a threshold for feature distances.

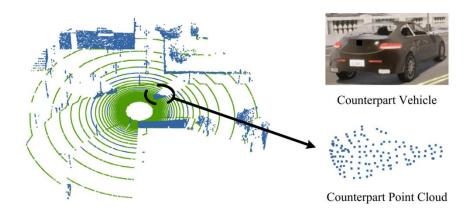
> Transformation Estimation:

The transformation estimation can be solved using particular algorithms, with the Random Sample Consensus (RANSAC) algorithm being most commonly used.

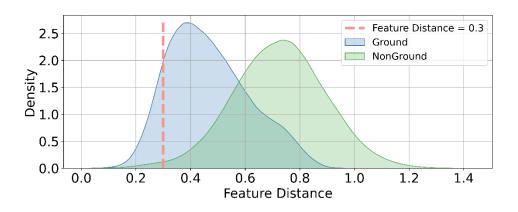
Motivation

Impact of different types of point clouds

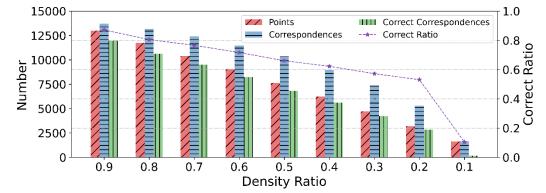
➤ Counterpart point cloud → can not find correspondence

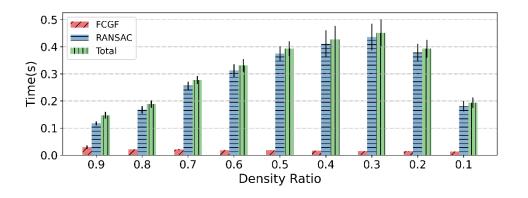


 \rightarrow Ground points \rightarrow majority of the points & concentric circles → behave similarly



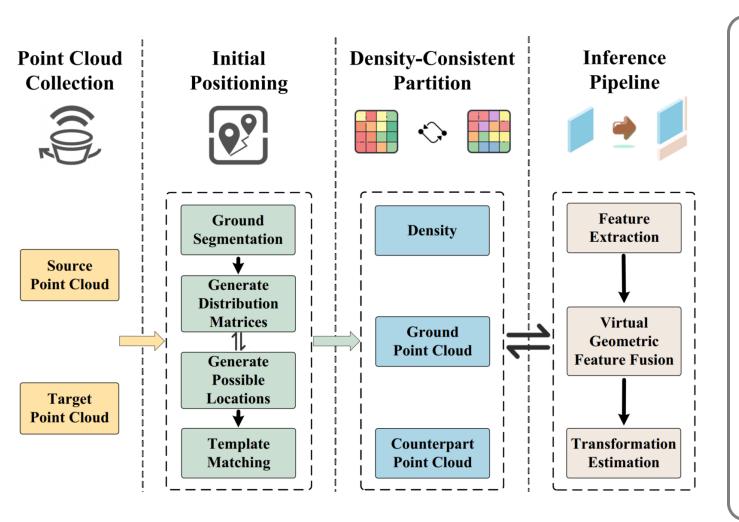
- ➤ Non-ground points → different densities → different extracted features
 - → negative influence on point cloud registration





- **▶** Background & Motivation
- System Architecture
- > Methodology
- **Evaluation & Conclusion**

System Architecture



Workflow

- Initial positioning based on point cloud distributions: convert point clouds into distribution matrices, and perform template matching to determine the initial transformation.
- Density- consistent partition strategy: identify correspondences between regions in source and target point cloud, simplify the ground point cloud while preserving observations about the counterpart vehicle.
- Inference Pipeline: integrate virtual geometric features with those features extracted from the partitioned point cloud.

- **▶** Background & Motivation
- > Related Work & Problem Formulation
- > Methodology
- **Evaluation & Conclusion**

➤ Four Main Steps

Step 1

Execute Ground Segmentation to obtain ground point cloud G, non-ground low point cloud \widehat{G}^{l} , and non-ground high point cloud \widehat{G}^{h} .

Step 3

Generate Possible Locations by identifying gaps in the ground distribution matrix, and further filter possible locations.

Step 2

Divide these point clouds to Generate Distribution Matrices, and denote matrices as M, \widehat{M}^l and \widehat{M}^h from point clouds $\widehat{\mathcal{G}}$, $\widehat{\mathcal{G}}^l$, and $\widehat{\mathcal{G}}^h$, respectively.

Step 4

Seek pairs of points in two possible locations' sets, and implement Template Matching to obtain initial transformation matrix.

> Ground Segmentation

Employ Patchworkpp to obtain ground point cloud G and non-ground point cloud \hat{G} Partition \hat{G} into non-ground low point cloud \hat{G}^l and non-ground high point cloud \hat{G}^h

$$\hat{\mathcal{G}}^{l} = \{ p_{k} \in \mathcal{P} \mid z(p_{k}) \leq z_{init} + z_{thr} \}$$

$$\hat{\mathcal{G}}^{h} = \{ p_{k} \in \mathcal{P} \mid z(p_{k}) \geq z_{init} + z_{thr} \}$$

$$--- \Rightarrow \begin{cases} z(\cdot) \text{ returns the } z \text{ value of a point} \\ z_{init} \text{ denotes the height of the LiDAR} \\ z_{thr} \text{ denotes a defined threshold} \end{cases}$$

> Generate Distribution Matrices

Core: Divide the point cloud into meshes based on the (x, y) values of the points.

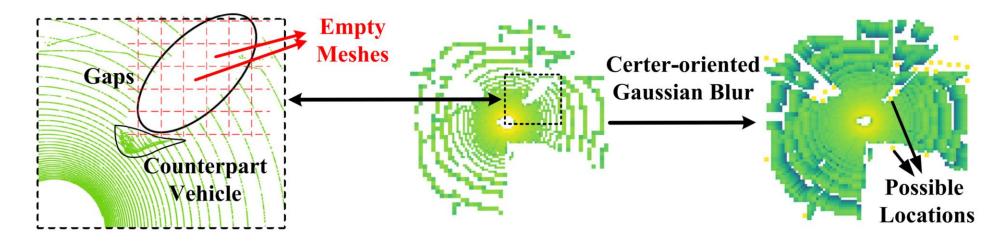
Denote three Matrices as as M, \widehat{M}^l and \widehat{M}^h .

Employ larger area for long-distance meshes.

→ Generate Possible Locations

Core: vehicles in the perceptual range create gaps in the ground \rightarrow Identify gaps in ground distribution matrix M Devise a center-oriented Gaussian blur to fill in ground gaps at long distances

Find obscured objects in front of gaps \rightarrow Filter possible locations $\rightarrow \mathcal{C} = \{(x^1, y^1), \dots, (x^i, y^i), \dots, (x^n, y^n)\}$



> Template Matching | - - - -

 $d_s^i = \| (x_s^i, y_s^i) \|_2$, the distance between possible location and center $|\mathcal{C}_s|$, $|\mathcal{C}_t|$ denote the possible locations' sets from two vehicles

$$\mathcal{D}_{S} = \left\{d_{S}^{1}, \dots, d_{S}^{i}, \dots, d_{S}^{|\mathcal{C}_{S}|}\right\}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{D}_{t} = \left\{d_{t}^{1}, \dots, d_{t}^{j}, \dots, d_{t}^{|\mathcal{C}_{t}|}\right\}$$

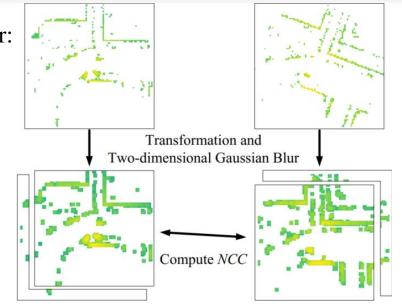
If
$$|d_s^i - d_t^j| < d_{thr}$$
, calculate the rotation angle and translation vector:
$$\delta_{ij} = \arctan(-y_s^i, -x_s^i) - \arctan(y_t^j, x_t^j)$$
$$t_{ij} = ((x_s^i - x_t^j)/2, (y_s^i - y_t^j)/2)$$

Rotation angle enables the pair of possible locations to be approximately symmetric about the center Translation vector makes the possible locations are close to the center in corresponding matrices

Execute transformation and two-dimensional Gaussian Blur: \widehat{M}^h , $\widehat{M}^l \to \widehat{M}^{h'}$, $\widehat{M}^{l'}$

Core: Execute Binarization and calculate the Normalized Cross Correlation (NCC) for Template Matching:

$$NCC(\widehat{M}_{S}^{h'}, \widehat{M}_{t}^{h'}) = \frac{\sum_{x,y} (\widehat{M}_{S}^{h'}(x,y) \cdot \widehat{M}_{t}^{h'}(x,y))}{\sqrt{\sum_{x,y} \widehat{M}_{S}^{h'}(x,y)^{2} \cdot \sum_{x,y} \widehat{M}_{t}^{h'}(x,y)^{2}}}$$




```
Algorithm 1: Template Matching.
   Input: Distribution matrices: \hat{M}_{s}^{h}, \hat{M}_{s}^{l}, \hat{M}_{t}^{h}, \hat{M}_{t}^{l};
           Possible locations sets: C_s, C_t; Distance sets:
                                                                                              Core: Find possible locations and execute two-layer
           \mathcal{D}_s, \mathcal{D}_t;
   Output: Initial rotation angle, \delta; Initial
                                                                                    template matching → initial transformation
             translation, t;
 1 STEP-1: Find Possible Locations Correspondences:
 2 Initialize C_{st};
 3 for i=1 to |\mathcal{D}_s| do
                                                                                     Find the corresponding pairs of points based on the
       for j = 1 to |\mathcal{D}_t| do
          if |d_s^i - d_t^j| < d_{thr} then
                                                                                      distance to the center.
               Insert (C_s[i], C_t[j]) into C_{st};
 7 STEP-2: First Layer Template Matching:
 8 Initialize NCC set \mathcal{N}1 and \mathcal{N}2;
 9 Perform Gaussian blur on \hat{M}_s^h and \hat{M}_s^l;
10 for k=1 to |\mathcal{C}_{st}| do
                                                                                     Execute the first layer template matching on non-ground
       Compute \delta_k and t_k by \mathcal{C}_{st}[k];
       Transform and perform Gaussian blur to take
                                                                                     high point cloud.
        \hat{M}_s^h, \hat{M}_t^h to \hat{M}_s^{h'}, \hat{M}_t^{h'};
      Insert NCC(\hat{M}_s^{h'}, \hat{M}_t^{h'}) into \mathcal{N}1;
14 Select NCC from \mathcal{N}1 as \mathcal{N}1 and corresponding
                                                                                   Select corresponding pairs of points via top-k selection.
    coordinates from C_{st} as C'_{st} via top-k selection;
15 STEP-3: Second Layer Template Matching;
16 for k=1 to |\mathcal{C}_{st}^{'}| do
       Compute \delta_k^0 and t_k by \mathcal{C}'_{st}[k];
       Extend \delta_k^0 to [\delta_k^0, \delta_k^1, \delta_k^2, ..., \delta_k^{w-1}];
                                                                                     Extend the values of \delta_k and t_k and execute the second
       for \delta_k in [\delta_k^0, \delta_k^1, \delta_k^2, ..., \delta_k^{w-1}] do
           Transform and perform Gaussian blur to
                                                                                     layer template matching on non-ground low point cloud.
            take \hat{M}_s^l, \hat{M}_t^l to \hat{M}_s^{l'}, \hat{M}_t^{l'};
           Insert \mathcal{N}1'[k] + NCC(\hat{M}_{\circ}^{l'}, \hat{M}_{t}^{l'}) into \mathcal{N}2;
22 Select the highest NCC from N2 and
                                                                                     Return the \delta and t with highest NCC
    corresponding \delta and t;
 23 Return: \delta. t:
```


Density-consistent Partition

> Three factors for partition

Factor 1

Density

Factor 2

Counterpart point cloud

Factor 3

Ground point cloud

> Density

- \checkmark Merge the matrices \widehat{M}^l and \widehat{M}^h into a non-ground distributed matrix denoted as \widehat{M} .
- ✓ Adopt a larger mesh length to reduce the effect of initial transformation error.
- ✓ Select corresponding meshes with close density ratios :

$$1/dt \le \widehat{M}_t(i,j)/\widehat{M}_s(i,j) \le dt$$
 $---$ dt denotes the density threshold

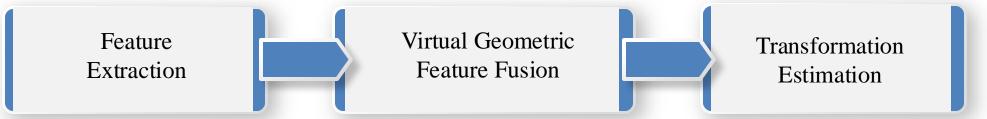
Counterpart point cloud

✓ Be filter out due to the mismatch in density → Keep this part and utilize it

Ground point cloud

- \checkmark Exhibit similar features \rightarrow calculate and retain the normal and height
- ✓ Normal vector could initiate the rotation in x-axis and y-axis \rightarrow pitch and roll angles of the vehicle
- ✓ Height could be embedded as features

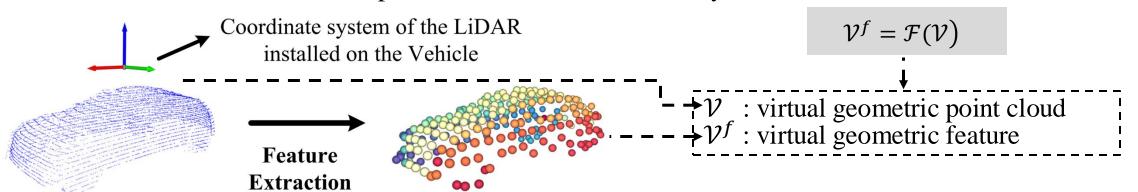
Inference Pipeline



Feature Extraction & Transformation Estimation are consistent with previous work.

Virtual Geometric Feature Fusion

- ✓ Geometric Feature Construction:
 - Gather point clouds using *reference LiDARs* from various positions surrounding a vehicle.
 - Record transformation matrices between these *reference LiDARs* and the LiDAR installed on the vehicle.
 - Transform these collected point clouds into a coordinate system.



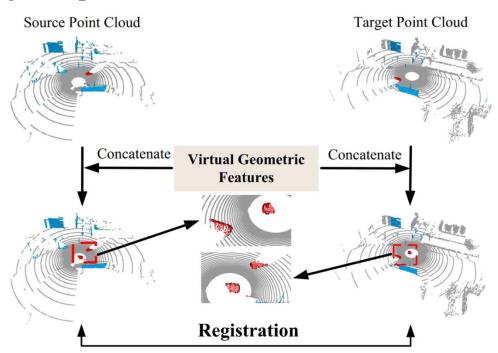
Inference Pipeline

> Virtual Geometric Feature Extraction

 \checkmark Take the partitioned point cloud \dot{P} to generate integrated point cloud \dot{P}' :

$$\dot{\mathcal{P}}' = Concat(\dot{\mathcal{P}}, \mathcal{V}_s)$$
$$\mathcal{F}(\dot{\mathcal{P}}') = Concat(\mathcal{F}(\dot{\mathcal{P}}), \mathcal{V}_s^f).$$

Instead of integrating the entire virtual point cloud, we trim it based on the initial transformation to avoid mismatched of correspondence.



- ✓ Assign fixed values into the features of counterpart point cloud and the virtual geometric point cloud.
- ✓ Assign values about ground height into the features of partitioned point cloud.

- **▶** Background & Motivation
- > Related Work & Problem Formulation
- **▶** Basic Idea & Solution
- **►** Evaluation & Conclusion

Dataset

◆ CARLA Simulator → gather LiDAR point clouds & collect virtual geometry point clouds of different vehicles.

Platform

- Employ ERS on laptops as resource-limited vehicles
- measured data rate around 7.0 Mbps

Experimental Settings

Feature Extraction + Transformation Estimation:

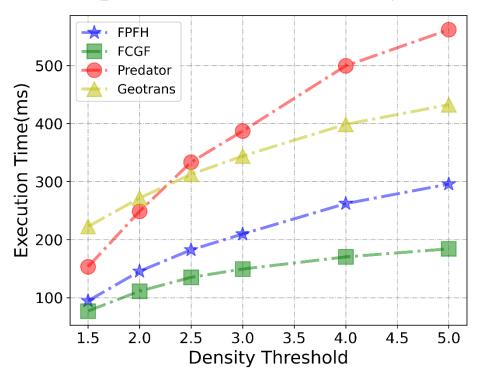
- ◆ FPFH + RANSAC
- ◆ FCGF + RANSAC
- Predator + RANSAC
- GeoTransformer (End-to-end method)
- Accuracy: Relative Rotation Error (RTE), Relative Translation Error (REE), Feature Matching Recall (FMR), Registration Recall (RR)
- Running Time: Execution time & Transmission latency

Compared Algorithms

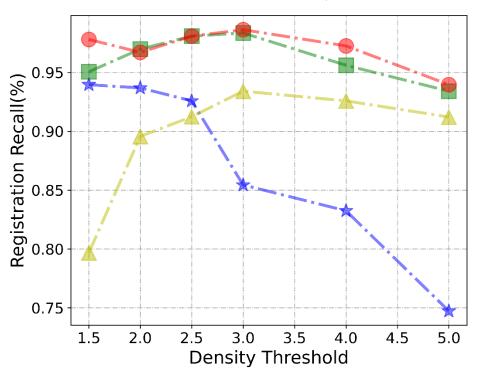
Evaluation Metrics

Evaluation

☐ Impact of different density thresholds on execution time and accuracy



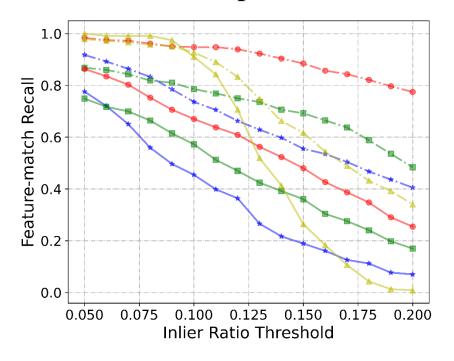
The execution time for each method increases as the density threshold increases.

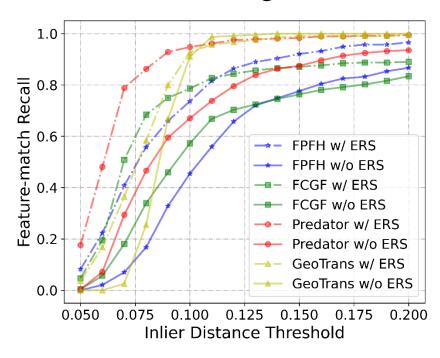


Registration Recall reach their highest values at lower density thresholds and then gradually decrease.

Taking into account the execution time and RR, select appropriate density thresholds for these registration methods.

☐ FMR with respect to inlier distance (left) and inlier ratio (right)





- ✓ ERS effectively enhances the quality of corresponding point pairs.
- ✓ With the inlier ratio and inlier distance fixed at 0.1 and 0.1 m, three methods see significant improvement after deploying ERS.
- ✓ GeoTransformer shows a slight increase at this point but a clear improvement in the overall quality.

Accuracy under three cases:
without ERS employment,
with ERS deployment but no virtual geometric features (VGF),
with full ERS deployment

Method	RTE(m)	STD(m)	$\mathrm{REE}(^{\circ})$	$\mathrm{STD}(^{\circ})$	RR(%)
FPFH w/o ERS FPFH w/o VGF FPFH w/ ERS	$0.360 \\ 0.335 \\ 0.212$	$0.267 \\ 0.297 \\ 0.167$	$ \begin{array}{r} 1.460 \\ 1.325 \\ 1.091 \end{array} $	1.010 0.950 0.826	19.5 86.5 94.0
FCGF w/o ERS FCGF w/o VGF FCGF w/ ERS	0.327 0.347 0.213	$0.408 \\ 0.322 \\ 0.227$	0.812 1.302 0.615	0.717 1.011 0.602	58.2 92.7 97.0
Predator w/o ERS Predator w/o VGF Predator w/ ERS	$0.198 \\ 0.350 \\ 0.141$	$0.166 \\ 0.279 \\ 0.146$	0.779 1.567 0.581	0.640 1.102 0.471	63.2 77.5 97.8
GeoTrans w/o ERS GeoTrans w/o VGF GeoTrans w/ ERS	0.194 0.292 0.248	0.246 0.312 0.301	0.537 1.242 1.005	0.829 1.112 0.991	64.6 85.9 89.6

All methods achieve higher RR after deploying ERS.

Three methods achieve higher accuracy in terms of RTE and RRE.

RRE and RTE are the average values when registration is successful, deploying ERS solves a large number of complex scenarios. So the RTE and RRE of GeoTransformer becomes higher.

☐ Average execution time for each step of ERS

Steps	Times(ms)	
Ground Segmentation	12.33	
Generate Possible Locations	4.20	
Template Matching	12.99	
Density-Consistent Partition	1.63	

ERS operates independently of the specific registration methods.

The average overall execution time of ERS is 31.15ms.

■ Average transmission latency

Raw LiDAR point cloud (2.0 MB) \ point cloud after voxelization(1.2 MB) →
Sparse distribution matrices (16.23 KB) +
Selected point clouds (29.68 KB or 49.65 KB with density threshold as 1.5/2.0)

ERS delivers a more than 18.5X data transmission saving.

Execution times of the four registration methods

Method	Down-	Extract	Transformation	Total Execution
	Sampling(ms)	Features(ms)	Estimation(ms)	Time(ms)
FPFH w/o ERS	-	168.70	436.37	605.07
FPFH w/o VGF	-	23.38	55.30	77.68
FPFH w/ ERS	-	31.89	62.52	94.41
FCGF w/o ERS	-	64.51	$669.68 \\ 129.18 \\ 74.20$	734.19
FCGF w/o VGF	-	31.13		160.31
FCGF w/ ERS	-	31.33		105.53
Predator w/o ERS	329.47	298.08	740.91	1368.46
Predator w/o VGF	40.16	36.43	112.91	189.50
Predator w/ ERS	46.22	39.88	66.23	152.33
GeoTrans w/o ERS	354.23	221.12	143.81	719.16
GeoTrans w/o VGF	72.73	45.04	142.83	260.60
GeoTrans w/ ERS	74.69	47.13	143.67	265.49

FGCF & Predator: VGF effectively increases the correspondences so that RANSAC reaches the termination condition earlier.

FPFH & GeoTransformer: VGF results in a slight time increase.

ERS speeds up the overall running time by 5.7X on average, up to 8.0X. All methods achieve real-time or near real-time performance.

Conclusion

✓ We present ERS, a plug-andplay system to enhance the speed and accuracy of LiDAR point cloud registration between CVs.

✓ Extensive simulations validate its great performance. Results demonstrate that ERS improves the overall running time of current state-of-art baselines by 5.7X with 42.1% registration recalls gains.

✓ To facilitate computing and transmission, we propose three key components to find overlapping regions: initial positioning, density-consistent partition strategy, and virtual geometric feature fusion.

Thank you for your attention!

Question?

Yu Zhao zhaoyu0624@mail.ustc.edu.cn

